HDAC Inhibitor-Induced Mitotic Arrest Is Mediated by Eg5/KIF11 Acetylation.
نویسندگان
چکیده
Histone deacetylase 1 (HDAC1) is an epigenetic enzyme that regulates key cellular processes, such as cell proliferation, apoptosis, and cell survival, by deacetylating histone substrates. Aberrant expression of HDAC1 is implicated in multiple diseases, including cancer. As a consequence, HDAC inhibitors have emerged as effective anti-cancer drugs. HDAC inhibitor-induced G0/G1 cell-cycle arrest has been attributed to epigenetic transcriptional changes mediated by histone acetylation. However, the mechanism of G2/M arrest remains poorly understood. Here, we identified mitosis-related protein Eg5 (KIF11) as an HDAC1 substrate using a trapping mutant strategy. HDAC1 colocalized with Eg5 during mitosis and influenced the ATPase activity of Eg5. Importantly, an HDAC1- and HDAC2-selective inhibitor caused mitotic arrest and monopolar spindle formation, consistent with a model in which Eg5 deacetylation by HDAC1 is critical for mitotic progression. These findings revealed a previously unknown mechanism of action of HDAC inhibitors involving Eg5 acetylation, and provide a compelling mechanistic hypothesis for HDAC inhibitor-mediated G2/M arrest.
منابع مشابه
Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint.
Spindle poisons such as paclitaxel are widely used as cancer therapeutics. By interfering with microtubule dynamics, paclitaxel induces mitotic arrest and apoptosis. Targeting the kinesin Eg5, which is required for the formation of a bipolar spindle, is a promising therapeutic alternative to drugs that interfere with microtubule dynamics. Recent data suggest that the spindle checkpoint can dete...
متن کاملMitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells.
Taxanes are powerful chemotherapy agents that target the microtubule cytoskeleton, leading to mitotic arrest and cell death; however, their clinical efficacy has been hampered due to the development of drug resistance. Therefore, other proteins involved in spindle assembly are being examined as potential targets for anticancer therapy. The mitotic kinesin, Eg5 is critical for proper spindle ass...
متن کاملCloning, enzyme characterization of recombinant human Eg5 and the development of a new inhibitor.
The microtubule-dependent motor protein Eg5 is essential for the development and function of the mitotic spindle. Now it has become an anti-mitotic drug target in high throughput screening for anticancer dugs in vitro. Here is a protocol for cloning, expression and purification of a human Eg5 that codes for motor and linker domain in Escherichia coli BL21 (DE3) cells. The effects of temperature...
متن کاملThe NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation.
Nek6 and Nercc1 (also known as Nek9) belong to the NIMA family of protein kinases. Nercc1 is activated in mitosis, whereupon it binds, phosphorylates and activates Nek6. Interference with Nek6 or Nercc1 in mammalian cells causes prometaphase-metaphase arrest, and depletion of Nercc1 from Xenopus egg extracts prevents normal spindle assembly. Herein we show that Nek6 is constitutively associated...
متن کاملIn vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities.
Human Eg5, a member of the kinesin superfamily, plays a key role in mitosis, as it is required for the formation of a bipolar spindle. We describe here the first in vitro microtubule-activated ATPase-based assay for the identification of small-molecule inhibitors of Eg5. We screened preselected libraries obtained from the National Cancer Institute and identified S-trityl-L-cysteine as the most ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell chemical biology
دوره 24 4 شماره
صفحات -
تاریخ انتشار 2017